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Boundary-layer transition over a stationary disk in rotating flow is studied experi- 
mentally. Circular waves are observed in the boundary layer occurring on an end 
disk of a cylindrical cavity during impulsive spin-down to rest. The transient flow 
evolves into a quasi-steady regime that exhibits the properties of the Bodewadt flow. 
The circular waves develop in that flow. The critical Reynolds number Re = r(Q/v)t  
is determined .from frequency and wavelength measurements to be about 25. The 
corresponding dimensionless wavenumber 2xrlhRe is about 0.6 and the frequency 
2xf/Q, Re about 0.2. 

1. Introduction 
Steady flows over a rotating infinite disk in a rotating flow have been studied 

theoretically when both the disk and the fluid over it are rotating in the same 
direction (Kkrnan 1921 ; Bodewadt 1940 ; Rogers & Lance 1960). The range extends 
from quiescent flow over a rotating disk (Karman flow) to rotating flow over a 
stationary disk (Bodewadt flow). Zandbergen & Dijkstra (1977) and Lentini & Keller 
(1980) have extended the solutions beyond the KBrman flow to where the disk is 
rotating faster than the fluid far above it and in the opposite sense. The velocity 
profiles within the boundary layer over the disk are non-monotonic and prone to 
various modes of instabilities. Two such modes, both spiral, commonly known as 
Type I (Class B) and Type I1 (Class A) waves, were investigated by Gregory, Stuart 
& Walker (1955), Faller (1963), Faller & Kaylor (1966, 1967), Tatro & Mollo- 
Christensen (1967), and more recently by Wilkinson & Malik (1985). Type I waves 
have a well-defined orientation with respect to the azimuthal flow direction. They 
are at about 15' toward the centre of the disk from that direction. Type I1 waves 
have longer wavelengths than Type I waves and may be oriented either toward or 
away from the centre. Type I waves may be thought of as an intrinsic instability 
mode of the secondary flow near the wall due to the rotation of the boundary layer 
with respect to the fluid over it. In this respect, the instabilities observed 
experimentally on a rotating disk (Faller 1963), on a rotating cone (Kobayashi & 
Izumi 1983; Kobayashi, Kohama & Kurosawa 1983), and on rotating axisymmetric 
bodies (Kegelman, Nelson & Mueller 1983; Kohama 1985; Kohama & Kobayashi 
1983) belong in the category of Type I (Class B) waves. These instability waves roll-up 
into spiral vortices close to the wall. They break down eventually and contribute to 
transition to turbulence in the boundary layer. Visualization experiments of Clarkson, 
Chin & Shacter (1980) have provided further data on the nature of Type I instabilities, 
even though they could not identify Type I1 instabilities in their experiments. During 
their investigations of the transition of the flow between rotating disks, Szeri et al. 
(1983) reported a type of instability that occurs in irregular patterns. The structure 
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is concentric on the average and is identified as Type I1 waves. Neither an 
experimental nor a theoretical study of the stability of the Bodewadt flow seems to 
be currently available. 

Boundary-layer-stability experiments are usually done in steady-flow apparatus 
where there is no time constraint during probing into the flow as the turbulent fluids 
resulting from the breakdown of the instability waves are washed downstream 
continually. The laminar-turbulent transition in the boundary layer on a flat plate 
is a familiar flow of this type. Rotating-flow experiments where the secondary flows 
on the surfaces progress from the stable regions of the flow to the unstable regions 
also enjoy this convenience. The KLrmLn flow and its variations, such as the flow 
over a rotating cone, constitute one such class of flows. The Bodewadt flow, by 
contrast, poses serious difficulties for laboratory study. Conceptually, that the fluid 
moving from infinity through the viscous boundary layer emerges intact into the 
inviscid interior seems to run against the conventional unmediated perception of 
viscous flows (Greenspan 1968, p. 138). Experimentally, the stability characteristics 
of the viscous layer are uncertain. It is likely that the infinite flow is unstable and 
the realization of the steady laminar Bodewadt flow in the laboratory may not be 
feasible. If one could construct a steady-rotating-flow apparatus where the fluid away 
from the disk is rotating faster than the disk, then the disk boundary layer would 
be turbulent. Flow structures developing at larger radii would eventually breakup 
while being convected toward the centre of the disk. The turbulent fluid would fill 
the boundary layer. One would not be able to see the evolution of the infinitesimal 
waves into large-amplitude waves and their subsequent breakdown to turbulence at 
a certain transition radius, for example, as in the flat-plate boundary layer or as in 
the Ekman boundary layer when the fluid away from the disk is rotating slower than 
the wall. A solution to this problem is to study the flow under unsteady conditions 
where there is some time available during which the evolution of the waves may be 
observed, however short that timespan may be. The experimental study presented 
here is one such case. 

The topic of this article is an experimental investigation of the stability of the 
axially symmetric boundary layer due to the solid-body rotation of a fluid over a 
stationary disk. The partial differential equations for the steady flow may, by an 
appropriate similarity transformation, be reduced to a set of ordinary differential 
equations whose discovery and solution are due to Bodewadt (1940). The flow over 
the end disks in a cylindrical cavity during impulsive spin-down to rest closely 
approximates the Bodewadt flow. The preliminary results reported by Savag (1983) 
of the flow visualizations in such a boundary-layer flow showed a new class of waves. 
They are circular, occur deep in the boundary layer, and move slowly toward the 
centre of the disk. The breakdown and transition to turbulence starts at the perimeter 
and progresses toward the centre. The present article is a detailed account of that 
experimental study. 

2. Experimental set-up 
2.1. Apparatus 

Velocity measurements are made in toluene in the rotating-flow apparatus shown in 
figure l(a).  The set-up consists of a circular cylinder mounted on a turntable 
assembly. The cylinder is made out of Pyrex glass tubing. It has an internal diameter 
2R of 21.7 cm. An aircraft-grade lucite disk is glued onto the cylinder. A nylon insert 
forms the bottom of the cavity. The height-to-diameter ratio of the cavity H/2R is 
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FIQURE 1. Experimental arrangements. (a) Rotating-flow apparatus. (b)  Optical layout for 
laser-Doppler velooimetry. (c) Reference system and components of velocity vector. 
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1.0. The cylinder is clamped onto an aluminium base. This base is screwed to the 
turntable. The cylinder and the turntable are enclosed in a 40cm cubical glass 
container. The walls of the cube are made of 1 cm thick plate glass. The cubical cavity 
is hermetically sealed both at the motor shaft and the glass sidewalls. The turntable 
is driven by a programmable servo amplifier. Constant speeds could be achieved 
within 0.2% of the set speed. Impulsive speed changes are implemented for the 
present experiments. The turntable assembly accelerates at  a rate of 30 rad/s2 and 
decelerates at a rate of 40 rad/s2. 

The working fluid is toluene (density p = 0.87 g/cm3 and kinematic viscosity 
v = 0.0067 cm2/s at  23 "C). The fluid fills the cylindrical cavity and that between the 
cylinder and the surrounding glass cube. The index of refraction of toluene is 1.494 
and that of Pyrex glass 1.474. The close match of the indices alleviates the problems 
caused by the cylindrical surfaces during optical probing into the cavity. Further, 
the low kinematic viscosity of toluene permits relatively high Reynolds numbers 
Re = r(Q/v)? at low table speeds 52 [based on the local boundary-layer lengthscale 
( v /Q) i  and the azimuthal component Qr of the local velocity vector in the core]. The 
fluid is seeded with 2 pm diameter uniform glass microspheres for laser-Doppler 
velocimetry. The particle number density is about lo6 cm-3. The settling rate of a 
glass sphere is about 2 cm/hr. Velocity measurements in the boundary layer were 
made over the lower disk where the scattering-particle number density is higher than 
that over the upper disk due to the settling of the glass spheres under gravity. 

2.2. Velocirnetry 

Velocity measurements are made with a laser-Doppler velocimeter system. The 
optical arrangement is shown in figure l(b). This system has evolved from a 
commercially available unit (Thermal Systems Inc. Model 1990). The coherent light 
source is a fixed 2 W argon ion laser. The green (514.5 nm wavelength) and blue 
(488.0 nm wavelength) light beams from the laser are used for probing into the flow. 
The transmitting and the receiving optics for the green beam are stationary in the 
laboratory coordinate system. The blue-beam optics are placed on a two-dimensional 
traversing mechanism. This mechanism and its mirrors are so arranged that the blue 
optics can be positioned independently in the x- and y-directions (cf. figure 1 c). Thus, 
the green and the blue optics can be positioned relative to each other in the z-plane. 
The turntable assembly is mounted on a three-dimensional traversing mechanism. 
The optical arrangement enables simultaneous velocity measurements at any two 
points in z-planes selected by the vertical position of the flow apparatus. 

Two signal processors dedicated to the green and the blue beams are interfaced 
to a computer. The sampling rate is controlled by a preset counter. Time histories 
of the velocity signals are recorded by the data acquisition systems. A typical 
experiment starts after the cylinder assembly has been rotating at an initial constant 
speed Q, for about 30 min. Numerous preliminary runs indicated the necessity of such 
a long relaxation time for the inertial oscillations to subside and for the contents of 
the cylinder to reach solid-body rotation. The experiment is started by implementing 
a final constant rotation speed Q, or by stopping the cylinder. The time t = 0 mark 
from the servo amplifier starts the data acquisition. Sampling rates range from 10 
to 200 Hz. The free-running data rates of the two signal processors are adjusted 
typically to two orders of magnitude higher than the sampling rate to make 
simultaneous measurements within an acceptable time window. The velocity traces 
presented in this article are digitally filtered off line to remove the high-frequency 
instrumentation noise. The filtering is done through the convolution of the velocity 
traces by a Gaussian window. 
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2.3. Flow visualization 
Flow visualizations are done in water in the apparatus described by Savas (1983). 
A circular light source constructed of twenty-four incandescent frosty light bulbs is 
used as the illumination source for the aluminium flakes which act like minute mirrors 
in the flow field. The light circle has a diameter of 1 m and is placed 35 cm vertically 
above the cylinder. A camera placed along the axis of the cylinder has recorded the 
pictures shown in figure 2. A brief discussion of the appropriate lighting to visualize 
this axisymmetric flow is given by Savag (1983). A quantitative discussion of the 
visualization technique may be found in Swag (1985). 

The usual Cartesian (2, y, 2) and cylindrical (r, 8, z )  coordinate systems are used 
(figure lc) .  The origin is located at the centre of the bottom disk of the cylindrical 
cavity. The z-axis measures the distance from the surface of the disk and into the 
cavity. Thus, the mid-plane of the cavity is at z = 10.9 om. The components of 
the velocity vector u are (u, v, w) in the (x, y, 2)-directions and (u,., ug, w) in the 
(r, 8, 2)-directions. 

3. Discussion 
3.1. Flow visualization 

The photographs in figure 2 show the disk boundary layer at various flow conditions. 
The observable depth in the pictures is about 1 cm. The low-Reynolds-number 
regimes exhibit the circular waves in isolation. The pictures in figure 2 (a) shows these 
waves over the inner region of the disk. The initial rotation rate of the fluid was 
1.55 rad/s before the cylinder was impulsively brought to rest. The waves are circular. 
They move toward the centre with a low phase velocity which decreases slightly as 
they approach the centre (Savag 1983). The circular light source has axisymmetrically 
illuminated the boundary layer. No modulation due to the individual light bulbs is 
observable in the reflected light intensity from the aluminium flakes. The waves in 
the picture develop into azimuthal vortices. Therefore, two successive bands of bright 
or dark circles do not necessarily indicate one wavelength. They can also indicate 
rolled up material surfaces within one wavelength. No signs of boundary-layer 
separation are observable. The central region of the disk is calm. As the waves move 
into that region, their activity subsides. Evidently, the waves are moving into a stable 
region of the flow. This argument is plausible since the waves are moving into a region 
of the flow with lower Reynolds number. The Reynolds number T(SZ/V)$  is about 30 
at the innermost circle in figure 2a. The dark spot at the centre of the disk is due 
to the alignment of the flakes parallel to the axis of the cylinder as the fluid leaves 
the boundary layer for the core. The fluid occupying the outer region of the disk 
adjacent to the cylindrical wall and characterized by the irregular patterns in the 
picture is mostly the debris convected from the cylindrical wall and partly the 
remnants of the earlier waves which have broken down. A series of photographs 
showing the evolution of the circular waves is given by Savag (1983). 

Figure 2 (b) shows the boundary layer at a high Reynolds number shortly after the 
cylinder is brought to rest from 51, = 4.60 rad/s. A higher instability mode, a spiral 
mode, occurs simultaneously with the circular waves. These spiral waves are at 
12-18' toward the centre from the azimuthal flow direction. They are evidently the 
Type I (Class B) waves. Twenty-three cycles are present in this particular picture. 
Figure 2 ( b )  clearly isolates the class of circular waves of figure 2(a) from the spiral 
Type I waves. At high rotation rates the deceleration time of the cylinder becomes 
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FIGURE 2 (a, b ) .  For ception see facing page. 
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FIQUBE 2. Flow visualization in water (counter-clockwise rotation). (a) Circular waves at low 
Reynolds number (a, = 1.55 rad/s); (a) circular waves and spiral waves (Type I, Class B) at high 
Reynolds number (f2, = 4.6 rad/s); (c) circular waves and spiral waves (Type 11, Clam A) during 

f2, = 3.5 t o o ,  = 1.7 rad/s; (d) turbulent boundarylayer (f2, = 6.3 rad/s). 
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comparable with the evolution time of the boundary layer and with that of the waves; 
therefore, figure 2 (b) ought to be interpreted with due caution. Also, the slight local 
distortion of the circular waves near the edge of the disk in the figure is repeatable 
at that location and seems to be due to a local imperfection in the apparatus. 

Figure 2 (c) depicts the boundary layer soon after the cylinder was impulsively spun 
down from 3.5 rad/s to 1.7 rad/s. Continuous circular waves are present in the inner 
region of the disk. That region is surrounded by intermittent waves with larger 
wavelengths compared to the Type I waves of figure 2 (b). These intermittent waves 
are at 0-5' away from the centre with respect to the azimuthal flow direction. They 
are evidently Type I1 (Class A) waves. Hence, figure 2 (c) clearly isolates further the 
circular waves from the Type I1 waves. Nevertheless, there remains the possibility 
that these Type I1 waves are a later stage in the development of the circular waves 
seen in the central region of the disk in figure 2 (c) (cf. conclusions of Szeri et al. 1983). 

Figure 2(d) shows the developed stage of the flow over the disk. It is evidently 
turbulent. The boundary layer exhibits an apparently uniform turbulent scale over 
most of the disk. No signs of separation are visible. The flow maintains axial 
symmetry. The dark spot at the centre is similar to that in figure 2 (a) and indicates 
the outflow from the boundary layer at the centre. The persistently stable shape of 
that region and an apparent trend toward order at the centre indicate that the 
boundary layer may have a stabilizing effect in the central region of the disk. Further 
discussion of these final remarks is given below within the context of stability 
arguments. 

3.2. Velocity measurements 

The experiments cover the ranges of angular speeds of 0.13-3.5 rad/s and radii of 
1-10 cm. The local Reynolds number Re = r(Q/v)+ ranges from 5 to 230. The domain 
covers the circular waves and overlaps the spiral waves. Most of the measurements 
are confined to r < 5 cm in order to have enough time before the convected debris 
from the outer portion of the disk and the cylindrical wall is swept into the developing 
boundary layer. No hardware for shifting the frequencies of the laser light beams was 
available. Therefore, the radial velocity component u,, which is in the direction of 
the wave motion and starts from zero, could not be reliably measured. The azimuthal 
velocity component u8 is measured for detecting the waves in the transient flow. 
Modulations in the amplitude of the velocity histories are recorded that are due to 
the circular waves propagating toward the centre in the disk boundary layer. 

Figure 3 shows sample measurements of the azimuthal velocity component under 
conditions comparable with those of the flows depicted in figure 2(a, b). All traces 
in figure 3 are recorded at ( r ,  z )  = (4.5 cm, 4.0 mm). A quiescent period following the 
impulsive spin-down is characteristic of all traces. Viscous diffusion dominates that 
phase of the flow. The wavy nature of the flow becomes apparent after the boundary 
layer adjusts itself to the new conditions. The waves are clearly recorded at low 
Reynolds number in figure 3 (a). The probe is deep in the boundary layer at this low 
Reynolds number. As the waves roll into azimuthal vortices, a surface of discon- 
tinuity is recorded in the latter stages of the flow as indicated by an arrow in the 
figure (see also figure 5a below). Further, signs of breakup are also present in the 
figure. These slow oscillations near the centre are the signatures of the circular waves 
of figure 2 (a). The traces in figure 3 (b, c) recorded at higher Reynolds numbers contain 
finer details in addition to the large-amplitude, low-frequency circular waves. These 
additional features are due to the spiral Type I (Class B) waves. The noise level at 
these high flow velocities increases due to the lagging of the glass beads in toluene. 
The final phases of the flows become erratic quickly, owing, perhaps, to the fact 
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FIQURE 3. Sample velocity histories at r = 4.5 cm and z = 4 mm. (a) Low Reynolds number 
(a, = 0.21 rad/s) ; (a) moderate Reynolds number (ai = 1.51 rad/s); and (c) high Reynolds number 
(a, = 3.26 rad/s). 

that the boundary layer is already turbulent in the latter portions of the traces 
in figure 3 (b, c ) .  These two traces are comparable with the picture of figure 2 (b) where 
the spiral waves of Type I are riding on the circular waves and extending alone 
toward the centre of the disk. 

Figure 4 shows six velocity traces in the boundary layer at different radii. The 
traces are simultaneous in pairs. All traces are taken at  z = 4.5 mm and a t  
Qi = 0.5 rad/s, and therefore at z(v/Qi)f = 3.9, which lies at  the outer edge of the 
Bodewadt boundary layer. The measured component of the velocity vector is v a t  
8 = 45" (cf. figure lc ) .  The traces accentuate both the radial and the azimuthal 
fluctuations. The flow is incoherently fluctuating at the outer radii while the circular 
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FIGURE 4. Velocity traces showing the nature of the flow over the disk during spin-down to rest 
(0 = 45O, z = 4.5 mm, SZ, = 0.5 rad/s). The trams are simulations in pairs of (a, b) ,  (c, d )  and (e,f). 
(a) r = 8.0 cm, (a) 5.6 cm, (c) 4.0 cm, (d) 2.8 om, (e) 2.0 cm, and (f) 1.4 cm. 
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waves are evolving in the inner region of the disk. The initial response of the boundary 
layer is approximately the same over the disk and is characterized by an overshoot 
of the Bodewadt velocity profle at this depth (the response of the boundary layer 
is further discussed below). The waves breakdown earlier at the larger radii (cf. 
figure 4b, e). 

The conspicuous high excursions on the simultaneous traces in figure 4(a,  b) are 
due to the convected debris from the cylindrical wall. The flow during spindown is 
inherently unstable. The cylinderical wall (which is at rest in the case of spin-down 
to rest) and the faster rotating core away from the concave surface are conductive 
to the Taylor instability mechanism, much like the circular Couette flow when the 
inner cylinder is rotating faster than the outer one. Soon after the speed of the cylinder 
is reduced, the flow in the vicinity of the cylinder becomes unstable and Taylor- 
Gortler vortices develop. These vortices are observed during the flow-visualization 
experiments. The flow pattern in the cylinder during spin-down is such that these 
vortices are convected toward the end disks of the cavity (cf. figure 2a).  The traces 
in figure 4 ( a ,  b) show velocities recorded in the vicinity of the corner where the 
convected vortices should be encountered without much distortion. The traces in 
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figure 4 ( e , f )  are closer to the centre in the disk boundary layer where the circular 
waves are present. The traces of figure 4 ( a ,  b) show a convective process occurring 
near the cylinderical wall while the interior of the disk is experiencing a locally 
originated wave activity. In  another series of experiments, the deceleration of the 
cylinder was varied from 2.5 to 40 rad2/s. The wave behaviour as indicated by the 
velocity measurements did not differ substantially from that described above. 

3.3. Development of the boundary layer 
The evolution of the boundary-layer flow is shown in figure 5 at r = 5.1 cm following 
the impulsive spin-down to rest from 52, = 1 .O rad/s. The profiles in figure 5 (b) of the 
azimuthal velocity component are constructed from single time histories recorded 
at various distances from the wall, such as the traces shown in figure 5(a ) .  Values 
corresponding to time-steps are extracted from the traces through a Gaussian filter. 
The velocity component ue is scaled with the instantaneous angular velocity D(t)  of 
the core, which is determined as described below. The individual values are adjusted 
for the inadvertent variations in the initial rotation speed 52,. The numerical solution 
of the steady-state velocity profile in the Bodewadt flow is also shown for comparison 
at each instant. The profile is initially uniform except for the impulsive diffusive 
behaviour in the vicinity of the wall. The boundary layer responds simultaneously 
across its depth. Following an overshoot in the region 2 mm < z < 6 mm, the profile 
settles approximately to the steady-state solution after about 4 s, or equivalently, 
4 rad rotation of the core at 52, = 1 .O rad/s. The instability waves dominate the flow 
thereafter and the profiles lose their coherence. The waves are confined to the 
boundary layer aa indicated by the traces in figure 5(a)  and profiles in figure 5 ( b ) .  
Figure 5 (c) shows the velocity profile constructed by averaging the transient velocity 
records over the timespan of the waves, which is about 5 s at 52, = 1.0 rad/s. The 
result is in good agreement with the steady profile in spite of the high modulation 
in the velocity traces. Therefore, a stability analysis of the Bodewadt flow, using 
as the background flow the laminar solution of the steady-flow equations, should 
theoretically confirm the circular waves. A similar profile constructed after the flow 
in the boundary layer becomes turbulent is shown in figure 5(&) (cf. figure 2 4 .  Even 
though the turbulent Bodewadt flow has not been studied, the data of figure 5 ( d )  
indicate a similarity with its laminar counterpart. 

3.4. Response time 
The flow studied here is unsteady at numerous levels. The first distinction may be 
made with regard to the various instabilities present in the flow such as inertial 
oscillations and Taylodlortler vortices. Those aspects of the flow are beyond the 
scope of this article. The formation of the boundary layers over the end disks and 
the subsequent transient motion of the core, which is primarily a result of the 
secondary flows induced in the two quasi-steady disk boundary layers, are closely 
related to the subject matter of this article. Figures 6 (a and b) compare the response 
of the core and the disk boundary layer to the impulsive speed change during 
spin-down to rest. A sample velocity history of the core is shown in figure 6 (a). The 
flow is characterized by intense fluctuations in a monotonically slowing mean flow. 
The nature of these fluctuations need not be considered here. The mean flow of the 
inviscid core can be modelled by using vortex stretching arguments. The model 
matches the uniform axial velocity at the ends of the cylindrical core to the uniform 
ejection velocity of the end-disk boundary layers. The angular velocity of the core 
in solid-body rotation can be expressed by the simple expression S2(t)/Qi = (1 + T ) - ~ ,  
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FIGURE 5(a) .  For caption see facing page. 

where T = 0.69(2R/H) (v /Q,  R2):Qi t (Weidman 1976). The prediction of this model 
is also shown in figure 6(a)  by a smooth curve over the measured velocity history. 
The model describes well the average behaviour of the core. Hence, the mean 
behaviour of the angular velocity of the core Q ( t )  given by the expression above is 
used in the discussions in this article (e.g. figure 5). Figure 6(b) shows the velocity 
history recorded in the Bodewadt boundary layer simultaneously with that in the 
core shown in figure 6(a). The azimuthal velocity component overshoots and returns 
to a quasi-steady state except for the waves. The response time T of the boundary 
layer is taken, as shown in figure 6(b), to be the time interval between the 
implementation of the impulsive speed-change command and the occurrence of a 
characteristic signature observed in the boundary layer (cf. figures 4 and 5) .  Such 
a signature is clearly identifiable in the outer region of the boundary layer (cf. 
figure 4). The results are summarized in figure 6(c). The decrease in the angular 
velocity of the core during the adjustment period of the boundary layer is small and, 
hence, the response time T is normalized with the initial rotation rate SZ, of the 
cylinder. The core fluid travels about 4 red in the time that it takes the boundary 
layer to reach its quasi-steady state. This is in agreement with Benton’s (1966) 
numerical calculations of the evolution of boundary layers over rotating disks. 

3.5. Inertial oscillations 
Impulsive changes in the speed of the container excite the inertial oscillations in the 
core of the cylinder. The linear oscillations that occur when the speed changes are 
small have been analysed analytically and verified experimentally (see, for example, 
Greenspan 1968). The nonlinear counterparts of these oscillations occur during the 
large impulsive changes in the speed of the container. The frequencies of individual 
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FIQURE 5. Evolution of the boundary layer during spin-down to rest (average Sa, = 1.0 rad/s and 
r = 5.1 cm). (a) Velocity traces at E = 10 mm (top), z = 2 mm (middle), and z = 0.5 mm (bottom). 
(b)  Evolving Bodewadt flow: 0, meamrements; -, Bodewadt’s solution (also in c and d). (c) 
Average profile during the wave activity. (d) Average profile in turbulent regime. 
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Qdradls) 
F1~~~~6.Respon~oftheflowduringspin-down torest(SZi = 0.64 rad/sandr = 3.1 cm). (a)Sample 
velocity history in the core ( z  = 10.7 cm). Smooth curve after Weidman (1976). ( b )  Sample velocity 
history in the boundary layer (z = 4 mm) taken simultaneously with the trace in (a). (c) Response 
time SZ, T of the boundary layer as defined in ( b )  versus the initial rotation rate a,. 

modes may be somewhat different from those of the linear oscillation modes. The 
oscillations may excite the boundary layers. That the circular waves are not 
manifestations of the inertial oscillation modes of the cylinder is demonstrated in 
figures 4-7. The boundary layer does not oscillate uniformly in figure 4. The wave 
activity is confined to the boundary layer as shown by the measurements in figure 
5 (a). The simultaneous traces in figure 6 (a, b) show a sample experiment where one of 
the velocity probes is located at  the mid-plane of the cylinder and the other in the 
boundary layer. The boundary-layer probe is recording the circular waves which have 
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FIQURE 7. Inertial oscillations : simultaneous velocity meaaurements (a) in the mid-plane 
( r  = 3.1 cm and z = 10.7 cm and (b)  in the boundary layer (r = 3.0 cm and z = 5 mm) during 
self-excited inertial oscillations within the cylinder rotating steadily at 0.68 rd/s .  

large amplitudes while the mid-plane probe does not show a comparable behaviour. 
Figure 7 (a, b) displays simultaneous velocity histories recorded at the two probes 
when the cylinder is rotating steadily at  0.68rad/s and inertial oscillations are 
present. In this arrangement, as in figure 6(a, b), one probe is at  the edge of the disk 
boundary layer and the other is at  the mid-plane of the cylinder and vertically above 
the first one. The container speed is not modulated. The oscillations are excited 
following an earlier modulation of the cylinder. The two traces are well correlated 
as expected for the oscillations. In this particular case, the velocities are in phase and 
have comparable amplitude modulations. Hence, the inertial oscillation modes of the 
cylinder do not play a significant direct role in the development of the circular waves 
in the Bodewadt boundary layer. 

4. Stability 
Figure 8 shows the measured stability characteristics of the Bodewadt flow and 

is the main result of this article. The scaling is after that of the flat-plate boundary 
layer except for the lengthscale, where (v/Q,)a is used. 

Figure 8(a) shows the wavenumber 2 x / A  of the circular waves versus the local 
Reynolds number r(Q/v)k The data in the figure are obtained from pictures and 
replotted from Savag (1983). The data suggest a critical Reynolds number of about 
30. This value should be taken as an upper limit for the critical Reynolds number 
of the Bodewadt boundary layer. The inflow from the edges of the disk and waves 
that move toward the centre encounter a stable region during their journey. That 
should suppress the fluctuations and force stabilization. The relative calmness of the 
flow in the central part of the disk was a conspicuous feature of all flow-visualization 
observations. Evidence of this calmness is provided in figure 2(a), where the central 
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FIGITRE 8. Stability diagrams: (a) wavenumber 2xr/ARe and (b )  frequency 2xf/P, Re as 
functions of the local Reynolds number r(&/v)f. 

part of the disk is free of wave activity. Further evidence is present in figure 2 ( d ) .  
The turbulent boundary layer loses its incoherence as the fluid approaches the centre. 
Eventually, the fluid leaves the disk in an orderly manner as evidenced by the rather 
smooth boundary of the central dark spot (cf. figure 2a).  

The measured frequencies of the circular waves are shown in figure 8 ( b ) .  The data 
are extracted from velocity traces such as those shown in figures 3-6. The frequency 
f is scaled with a i r ,  which approximates the local azimuthal velocity in the core 
during the wave activity. Since the waves move toward the centre as they develop, 
an upper envelope to the data in the figure should be taken as the stability limit. 
The figure indicates a critical Reynolds number of about 20, which is smaller than 
that indicated in figure 8 (a). That may be attributed to the fact that the waves move 
toward the centre where the background flow becomes stable. The wave activity that 
is being convected from the unstable region of the disk will still register oscillations 
in the velocity measurements. Therefore, the critical Reynolds number implied in 
figure 8(b )  ought to be taken as a lower bound. When the two bounds indicated in 
figure 8 are considered together, then one may conclude the critical Reynolds number 
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for the circular waves to be about 25. The corresponding critical dimensionless 
wavenumber 2xrlARe is about 0.6 and the dimensionless frequency 2nf/Oi Re about 
0.2. 

5. Closing remarks 
The behaviour of the flow over the disk in a cylindrical cavity during spin-down 

to rest is studied experimentally. The temporal evolution of the boundary-layer 
profile is determined from the measurements of the azimuthal component of the 
velocity vector. The flow approximates that described by Bodewadt. The core fluid 
travels about 4 rad during the evolution of the disk boundary layer. Observations 
and measurements made in the boundary layer show that a class of circular waves 
is excited. The average disk-boundary-layer profile during the lifespan of these 
circular waves remains similar to the steady profile of the Bodewadt flow. Therefore, 
a stability analysis of the Bodewadt flow would be germane to the understanding of 
the class of waves observed in this study. At sufficiently high Reynolds numbers, the 
Type I spiral waves are also excited along with the circular waves. The number of 
the circular-wave cycles seems to be restricted by the size of the disk. This is evident 
in figure 2 ( b )  where barely two cycles of the circular waves are observable at that 
rotation rate. A larger disk may alleviate that problem. However, the flow is likely 
to rapidly become locally turbulent at larger radii and the inward convection of the 
fluid wil!. eventually render the boundary layer turbulent. The average-velocity 
profile remains similar to its laminar counterpart after the boundary layer becomes 
turbulent. 

I thank Martin C. Jischke for his contributions to the fluid mechanics laboratory. 
I have benefitted from discussions with Donald Coles and John M. Russell. 
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